559 research outputs found

    A Call for the Structured Physicist Report

    Get PDF
    Introduction: The field of diagnostic radiology continues to struggle with the clinical adoption of the structured interpretive report, with many radiologists preferring a semistructured, free-text dictation style to a more rigid, highly structured approach that some professional leaders have promoted [1]. Although structured reporting compliance in the radiologist community has been difficult to achieve, diagnostic radiologists have been thinking about and discussing this important issue for many years; it is also a part of the ACR’s Imaging 3.0_ campaign [2]. In the breast imaging community, the well-established BI-RADS_ recommendations produce a very structured report, with a discussion of interpretive findings culminating in a numeric BI-RADS score ranging from 0 to 6 [3]. Unlike some interpretive radiology reports, which can be ambiguous in terms of the next course of action, the BI-RADS scale is not only a diagnostic scale but also prescriptive of what the necessary follow-up should be

    An open environment CT-US fusion for tissue segmentation during interventional guidance.

    Get PDF
    Therapeutic ultrasound (US) can be noninvasively focused to activate drugs, ablate tumors and deliver drugs beyond the blood brain barrier. However, well-controlled guidance of US therapy requires fusion with a navigational modality, such as magnetic resonance imaging (MRI) or X-ray computed tomography (CT). Here, we developed and validated tissue characterization using a fusion between US and CT. The performance of the CT/US fusion was quantified by the calibration error, target registration error and fiducial registration error. Met-1 tumors in the fat pads of 12 female FVB mice provided a model of developing breast cancer with which to evaluate CT-based tissue segmentation. Hounsfield units (HU) within the tumor and surrounding fat pad were quantified, validated with histology and segmented for parametric analysis (fat: -300 to 0 HU, protein-rich: 1 to 300 HU, and bone: HU>300). Our open source CT/US fusion system differentiated soft tissue, bone and fat with a spatial accuracy of ∼1 mm. Region of interest (ROI) analysis of the tumor and surrounding fat pad using a 1 mm(2) ROI resulted in mean HU of 68±44 within the tumor and -97±52 within the fat pad adjacent to the tumor (p<0.005). The tumor area measured by CT and histology was correlated (r(2) = 0.92), while the area designated as fat decreased with increasing tumor size (r(2) = 0.51). Analysis of CT and histology images of the tumor and surrounding fat pad revealed an average percentage of fat of 65.3% vs. 75.2%, 36.5% vs. 48.4%, and 31.6% vs. 38.5% for tumors <75 mm(3), 75-150 mm(3) and >150 mm(3), respectively. Further, CT mapped bone-soft tissue interfaces near the acoustic beam during real-time imaging. Combined CT/US is a feasible method for guiding interventions by tracking the acoustic focus within a pre-acquired CT image volume and characterizing tissues proximal to and surrounding the acoustic focus

    A Learning Curve Model Accounting for the Flattening Effect in Production Cycles

    Get PDF
    We investigate production cost estimates to identify and model modifications to a prescribed learning curve. Our new model examines the learning rate as a decreasing function over time as opposed to a constant rate that is frequently used. The purpose of this research is to determine whether a new learning curve model could be implemented to reduce the error in cost estimates for production processes. A new model was created that mathematically allows for a “flattening effect,” which typically occurs later in the production process. This model was then compared to Wright’s learning curve, which is a popular method used by many organizations today. The results showed a statistically significant reduction in error through the measurement of the two error terms, Sum of Squared Errors and Mean Absolute Percentage Error
    corecore